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Resumen

En este artículo se propone una prueba estadística para la especificación 
de los modelos paramétricos de dos factores. Se presentan tres pruebas 
diferentes. Las dos primeras se basan en una comparación de la estimación 
de la densidad de núcleo de la función de densidad desconocida y la 
estimación de la función de densidad marginal mediante el método Delta. 
La última prueba se basa en la idea de la comparación entre la estimación 
de la densidad de núcleo y el modelo paramétrico de la densidad de núcleo 
suavizado para evitar los efectos de sesgo. En particular, esta prueba se 
aplicó para determinar si la dinámica de la estructura temporal de tasa de 
interés de Cetes en México para el período 2002-2009 puede ser modelada 
a partir de los supuestos de los dos modelos, el de Brennan-Schwartz y el 
de Schaefer y Schwartz; los resultados de la prueba muestran que ambos 
modelos continuos son rechazados y por lo tanto no son capaces de describir 
los datos de los Cetes en México.
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Abstract

In this paper we propose a statistical test for the specification of parametric 
models of two factors. We present three different tests. The first two are based 
on a comparison between the estimate of kernel density of the unknown 
density function and the estimate of marginal density function by the Delta 
method. The last test is based on the idea of comparison between the estimate 
of kernel density and the parametric model of the smoothed kernel density 
to avoid skew effects. Particularly, this test was applied to determine if 
the dynamic of the term structure of the Mexican Cetes interest rate in the 
period 2002-2009 can be modeled from the assumptions of two models, 
that of Brennan-Schwartz and that of Schaefer-Schwart; the test results 
show that both continuous models are rejected and therefore are unable to 
describe the data of the Mexican Cetes.
Keywords: continuous-time model, marginal density function, Delta method, 
nonparameter estimation, diffusion process
JEL Classification:  C14, C44, C51

1. introduction

A common approach to model the term structure of interest rates is such 
that express the interest rate in terms of one or more stochastic factors, 
which in turn follow continuous time stochastic processes. Several studies 
by Dybvig (1989) and Steeley (1991) have concluded that the variability 
of rates with different maturity dates can be best explained more than 
one stochastic factor. This has lead researchers to develop time structure 
models that use two or more stochastic factors. Multi factor models are 
proposed by Brennan and Schwartz (1979), Schaefer and Schwartz (l984), 
Longstaff and Schwartz (l992), Hull and White (1990), Fong and Vasicek 
(1991), Heath, Jarrow and Morton (1992), Duffie and Kan (1995). The mod-
el of Brennan y Schwartz (1979) assumes that the short and long rates are 
the driving forces for the time structure, while the model advanced by 
Fong y Vasicek (1991) include the short rate and volatility as the main fac-
tors.

In the absence of a theoretical framework that defines in detail the term 
structure of interest rates, can be testing different models with real data, 

CONTENIDO 1
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without using any observation that coming from a set of prices derived from 
interest rates. Aït-Sahalia (1996) proposes an approach in this direction, it 
is assumed that the properties of a model that gives structure to terms is 
determined completely by a difusion process. This process is characterized 
by its two first moments of time continuum, tendency and diffusion. Each 
parametric model of the term structure has a certain density function 
characterized by the tendency and diffusion functions.

The statistical test is based in a comparison between the density function 
obtained from a parametric model of the time structure and a non-parametric 
estimate of the density function, which in turn is derived form data. The 
density function is valid even if the parametric model of the time structure 
is not well specified.

Nevertheless it should be pointed out that there are limits to this statistical 
test: first, it is only applied to one-factor models for term structure. Second, the 
most important assumption for this test is that data are smoothed when the 
non-parametric estimate of the density function is constructed, that means, it 
possess a high variance so the estimate introduces too much “noise” expressed 
by many “illegitimate” modes (relative maximums) which in turn do not appear 
in the desired density calculation, in this case, the non-parametric estimate is 
less than optimal. Therefore is not clear what happens to this test when the data 
are over smoothed. Thirdly, the test do no consider the skew effects inherent 
to the non parametric estimate of the density function. Next, the test of Yacine 
Aït-Sahalia (1996) will be explored in the aforementioned directions.

2. The model and null hypothesis

For a complete probability space  ),,( PFΩ  and augmented filtration 
 0}:{ ≥tFt  generated by a standard Brownian movement W in Rd, a time 
continuum model tipically depends on a stationary diffusion process X that 
takes values from some open subset D of Rd, with a dynamics represented by 
the Ito stochastic differential equation,

    
tttt dWXdtXdX ),(),(= βσβµ +   (1)

So that for any  β  in a bounded subset  dRΘ⊂ ,  ( , ) dRµ β⋅ ∈  and   ( , ) d×dRσ β⋅ ∈  
are the tendency and difussion functions respectively. The distribuition of 
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the process is completely characterized by its tendency and its diffusion. 
For example, for a one dimension stationary diffusion process, the marginal 
density function can be written as

  
 

2 20

( ) 2 ( , )
( , ) = { }

( , ) ( , )

x

x

u
x exp du

x u

η β µ βπ β
σ β σ β∫  (2)

Where the process is distributed over R and  )(βη  is a standarization 
constant that ensures that density integrates to one.

Generally, for any  Θ∈β  we use  ),( βπ x  to express the marginal density 
function which is implicit in the parametric model  )(xπ  to express the true 
marginal density function. The null hypothesis and alternative hypothesis 
are:

 
0 0 0: ( , ) = ( )   H exists such that x xβ π β π∈Θ

 

    Θ∈⋅≠⋅ βπβπ anyforH )(),(:1  

As in Aït-Sahalia (1996), our statistical test is based in a pondered integral 
of the squared difference between  )(xπ  and  ),(

0
βπ x ,

    dxxxxI )()),()((= 2πβππ −∫   (3)

We can use the measure I as a pointer of the incorrect specification 
of the model, because  0≥I  and I = 0 if and only if the marginal density 
function implied by the model is correctly specified. In order to obtain 
a consistent of parameter  

0β , a non parametric method is use the Delta 
method of nonparametric kernel functionals of Yacine Aït-Sahalia (1992) as 
follows,

     )(min=ˆ ββ
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and  )(ˆ xπ  represents the kernel estimate of the marginal density function 
 )(xπ , i.e.,
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i
d

1=

1
=)(π̂

  
(6)

where  )(⋅K  is a kernel function and h = hn is a smoothing parameter, 
bandwidth or window that does not depend on the data. Therefore, under 
H0 the estimate of the Delta method of  ),( βπ x  is  )ˆ,( nx βπ  and the true and 
unknown marginal density function of x,  )(xπ , can be estimated consistently 
with the kernel estimate  )(ˆ xπ  regardless to the correct specification of the 
parametric model.

If the estimates of  )(xπ  and  ),( βπ x  are  )(ˆ xπ  and  )ˆ,( nx βπ  respectively, they 
can be substituted in the definition of I producing the following estimate of I,

    dxxxxI nn )(ˆ))ˆ,()(ˆ(= 2πβππ −∫   (7)

3. The limit distribution of In under H0

The following assumptions are used to obtain the limit distribution of In.

Premise 1. For any  Θ∈β ,  ),( βσ ⋅  is locally bounded and is Borel measurable.

Premise 2. Let be q a measure of induced probability over Rd by X0 and  = 0
dR

dqλϕ∫  for any bounded and continous function  )(xφ  in Rd
 , where  λ  is the infinitesimal 

generator created by the diffusion process  0},{ ≥tX t .

Premise 3. The kernel function  )(⋅K  is a symmetric and bounded function in Rd 
that satisfies:

 ,||||0|)(|||||,<|)(| ∞→→∞∫ uwhenuKuduuK d

 
 

 ( ) = 0, ( ) = 2 , 1 , ,i i j iju K u du u u K u du k for i j d k Rδ +≤ ≤ ∈∫ ∫  
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Premise 4. The density function  )(⋅π  and its partial derivative of second order are 
bounded and uniformly continuous in BBRd.

Premise 5. The smoothing parameter h = hn satisfie  0→h ,  ∞→dnh  when  ∞→n .

Premise 6. The function of parametric density  ),( βπ u  and its partial derivative of 
second order respect  β  are uniformely bounded and uniformly continuous.  ),( βπ u  
and its partial derivative of second degree respect x are bounded and uniformly 
continuous in Rd. Also,  ∞∫ <|),(| dxuD' βπ , where  ),( βπ uD'  is a px1 partial 
derivative vector of first degree of the function  ),( βπ u  respect  β .

Premise 7. The succesion of observed data  { },1iX i n≤ ≤  is strictly stationary.

Premise 8. Exist  Θ∈*β  such that  *
ˆ ββ →n  a.s and 

 









+−+

−∞+

∞−∫ 2
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* ))()(()(=ˆ nouFuFdu pnFn ϕββ
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where  )(⋅F  and  )(⋅Fϕ  are the function of cumulative density and the 
derivative of  )(⋅F  respectively, associated with the unknown function of 
marginal density  )(⋅π .

Premise 9. The parameters space  dRΘ⊂  is compact and 
 [ ]))/,()()/,(( 00 'uuE ββπββπ ∂∂∂∂  has a full range. 

• Premise 1 guarantees the existence and uniqueness of a solution for 
the stochastic differential equation. Given that our model is a stochastical 
homogeneus differential equation in time and of Markovian type, also 
this premise is condition enough to ensure a non explosive solution.
• Premise 2 ensures that the solution process is stationary.
• Premises 3, 4 and 5 are used to obtain a limit distribution of the integral 
of the squared error for the estimate of the kernel density.
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• Premises 6 and 8 are used to examine the effect of the estimate of  
 ),( 0βπ u  by  )(~ xπ  over the limit distribution In. In particular, the last term, 
 (1)Po , from the right side of the equation (8), can be guaranteed assuming 
that the derivative  )(⋅Fϕ  is a cadlag bounded function.
• Premise 7 serves the purpose to limit the dependence of the discrete 
observations so that asymptotic theory can be used.
• Premise 9 ensures that the linear term in the Taylor expansion of a 
functional is not degenerate. If the linear term degenerates then the 
asyntotic distribution might be given by a term of greater degree present 
in the Taylor expansion.

From equation (7) we can write the squared integrable difference between 
 )(ˆ xπ   and  )(~ xπ  as follows,

 dxxxxdxxxxIn )(ˆ))()(~()(ˆ))()(ˆ(= 22 ππππππ −+− ∫∫
 dxxxxxx )(ˆ))()(~))(()(ˆ(2 πππππ −−− ∫

     
nnn III 321 2= −+   (9)
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Theorem 1 implies that the limit distribution of the integrable squared 
error of  )(ˆ xπ , I1n depends upon the amount of smoothing that is applied to 
the data. The limit distributions form Theorem 1 can be used to construct 
of proof for the null hypothesis  )(=)( 0 xx ππ  against the alternative 
 )()( 0 xx ππ ≠ , where  )(0 xπ  is a density function which is completely 
unknown. Furthermore, in order to Theorem 1 to be observed, the smoothing 
parameter h must satisfy  ∞→dnh2  or  04 →+dnh  (under smoothing data) 
or  ∞→+4dnh  (over smoothing data). So d must satisfy  3≤d  for under 
smoothing data. Nevertheless, when the null hypothesis is composite, that 
is, there are a finite number of unknown parameters, the last two terms of 
the right side of the equation (9) must be taken under consideration. For this 
purpose, the Taylor expansion and premise 8, under H0, we have
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and
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  dxxxxxxEJ n )(ˆ)],()(~)][()(ˆ[=)( 002 πβππππβ −−∫  (11)

The following lemma summarizes the behavior of  )( 01 βnJ  and  )( 02 βnJ , 
and therfore that of I3n.

Lemma 1. Under premises 1-9, for any  1<<0 δ  we have
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If the null hypothesis is satisfied from equation (11) and Lemma 1 we 

obtain the following expression,

    ( ) ( )1 2 0= 2n n n pI I J O n δβ −− +   (12)

this equation lays down that the parametric estimate of  ),(
0

βπ x  under 
the effects of the null hypothesis is the limit distribution of In only through 
 )( 02 βnJ . Therefore if the first term of the right side of equation (12) dominates 
the second term asimptotically, which is the case for under smoothed data, 
the parametric estimate of  ),(

0
βπ x  under the null hypothesis does not 

affect the limit distribuition of In as Yacine Aït-Sahalia (1996) demonstrates 
for d = 1. Nevertheless, if data are over smoothed, the limit distribution of A 
will be affected by non parametric estimates as the following theorem shows.

Theorem 2. Under the assumptions of Lemma 1, if the null hypothesis is satisfied 
and 
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Corollary 1. Under the assumptions of Lemma 1, and if the null hypothesis is 
satisfied, we have 
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4. Statistical test and its asymptotical distributions

The following statistical tests are based upon the estimates of  2
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where Gn is a delay of a selected truncate such that   +∞=lim nG  y  )(= 1/3nOGn

. 
This is the estimate of the spectral density at zero see (Yacine Aït-Sahalia, 1992). 
It is possible to find consistent estimates of V1 and V2 substituing the previous 
estimates in equations (13) and (14). Using the results obtained tests values for 
 ),(=)(: 00 βππ xxH  against the general alternative  ),()(:1 βππ xxH ≠  for any 
 Θ∈β .
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5. extension of the statistical test of Yacine Aït-Sahalia

Now we define the statistical tests as follows
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Theorem 3. Under premises 1 to 9, if H0 is satisfied and 
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Theorem 3 stablishes that a statistical test can be constructed to a 

significant level  α  to prove H0 against H1 that correspond to a diverse amount 
of smoothing applied to data. Also it is pointed that the statistical test T2n is 
an extension Yacine Aït-Sahalia (1996) test that can be applied to two factors 
model, by the small value of the smoothed parameter.

6. Statistical test for skew correction

As established before, the skew introduced by the kernel estimate of the density 
function has a significant influence in the test of H0 based upon the estimate of 
the squared error integral. The skew effects are reflected upon the restriction 
of the smoothing parameter, which can decrease to zero and cannot decrease 
too fast or too slow when the size of the sample tends to infinite. Based upon 
different restrictions in the smoothing parameter, two different tests can be 
obtained. Now, we present a statistical test that applies to any diffusion process 
of finite dimension, but also does not depend on the amount of smoothing 
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applied to data. Under H0, the expected value of the non parametric estimate 
 )(ˆ xπ  is 
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h
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h ),()(=),(*=)(ˆ 00 βπβππ −−∫ . Therefore, to eliminate 

the skew effects, we can construct an statistical test for adjusted skew based 
upon the weighted integral of the square difference divided by the non 
parametric estimate of the marginal density function implied in the data and 
the estimate of smoothed kernel of the function of marginal density implied 
by the parametric model,
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where  2
2σ̂  is defined as before.

The asymptotic distribution of the adjusted skew test is the same 
regardless of the nature of the data as under or over smoothing. It is also 
important to note that the adjusted skew test can be applied to de marginal 
density function of any diffusion process of finite dimensions.

7. Parametric models of two factors

There is a general acceptance that one factor models of the term structure 
cannot succesfully explain several characteristics of bond returns. The 
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reason for this is that the factor of the term structure and the returns and 
outcomes of the bonds must be perfectly correlated. As we have seen in the 
Introduction, several authors accept that moved by two uncertainty factors 
at least. So actual research focus into models of term structure that uses two 
state variables or stochastic factors. These models are mutually exclusive 
and do create different values when used to predict the price derived from 
different rates. From the two model research we can find that of Brennan 
y Schwartz (1979) and that of Schaefer Schwartz (1984) that create their 
specifications based upon stochastic processes using two interest rates. 
Before we use the specification test of Brennan-Schwartz and the model 
of Schaefer-Schwartz, we will find the marginal density functions of such 
models.

7.1 Models of term structure of 
Brennan-Schwartz and Schaefer-Schwartz

7.1.1 Model of Term Structure of Brennan-Schwartz

Brennan and Schwartz (1979) developed a straddle model for term structure 
of interest rates under the assumption that all the term structure can be 
expressed at any time in terms of the outcomes of instruments of short and 
long terms. If r defines the instant interest rate and l is the long term interest 
rate its model can be expressed as,

   
1

2 )(]1/2)lnln([= dWrdtrplrdr trrttt ⋅++−− σσα  (19)

   
2

2 )(]1/2)ln(([= dWldtlkldl tllttt ⋅++− σσθ  (20)

where p is the difference between the middle levels of 1nl and 1nr;  α  is the 
adjustment coefficient for the speed in which 1nr returns to  )ln( pl − ; k is the 
adjustment coefficient for the speed in which 1nl returns to the mean level 
of  θ ; and  δ=)( 21dWdWE  Using the Ito´s lemma, the previous equations can 
be written as,

    
1)ln)ln((=ln dWdtrplrd rttt σα +−−  (21)

 
    

2)ln(=ln dWdtlkld ltt σθ +−   (22)
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To put into practice our test, we have to estimate the unknown 
parameters assumed under the null hypothesis. The bivariate processes for 
1nr and 1nl is stationary in a joint form if  α  and k are greater than zero. 
Also, the solution of equations (21) and (22) is a Gaussian process if and 
only if the initial value is constant or normaly distributed. As a matter of 
fact the solution of the linear stochastic differential equation (21) and (22) 
can be expressed as
 
  dWBstAXttAX tt

1/2

00 ))((exp)())((exp= −+−⋅−+ ∫µµ  (23)
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Otherwise, if  α  and k are greater than zero, then the solution follows a 
Gaussian stationary process. For a stochastic stationary process, the marginal 
density function equals the density of the initial observation, therefore, we can 
obtain a stationary marginal density function of this process once we have the 
density function of the initial random variable. The marginal density can be 
obtained with equation (22) as follows,
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7.1.2  Model of term structure of Schaefer-Schwartz

Schaefer and Schwartz (1984) use the same information of the interest rate 
as Brennan and Schwartz (1979), but express its model in terms of the long 
term interest rate and the difference between it and the short term interest 
rate. This is a redefinition of the variables that make possible to obtain an 
analytical solution for the problem of valuation. Furthermore, Schaefer 
and Schwartz assume that the difference follows the process of Ornstein-
Uhlenbeck (a process of the reversion of the mean and the constant diffusion 
function). In financial research, the Ornstein-Uhlenbeck process has been 
used to model the short term interest rate. Nevertheless, it is reasonable to 
assumme a better probability that it is the difference and not the short term 
rate what follows this kind of process due to the fact that the model allows 
negative values. The specific form of the stochastic process of Schaefer and 
Schwartz is,

   
 

1)(= dWdtSdS tt γαβ +−   (25)
  
   

 
22 )(),,(= dWldttlSdl ttt σµ +   (26)

where dW1 and dW2 are standard Wiener processes with 
 dtdWdWdWEdWE ==0,=][=][ 2

2
2

121 . As in the model of Brennan-Schwartz, 
Schaefer and Schwartz assume that the difusion function of the console rate 
depends on its level. The tendency function of the console rate stays as in its 
general form. The process of Ornstein-Uhlenbeck,  1)(= dWdtSdS tt γαβ +− , has 
a transition density function given by 
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where
 

].[1
2

=)(
)0(2

2
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et
−−− β
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Let us suppose that the spread process shows the property of reversion 
to the mean ( 0>β ), then when  −∞→0t  or  ∞→− )( 0tt , the marginal density 
of the stochastic process is invariant through time, i.e., the spread process is 
stationary and the marginal density function can be expressed as follows:

 







 −
− 2

22 )(
exp

σ
αβ
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πσ s

For stationary diffusion processes, the only stationary processes with 
explicit transition density functions are those who have the linear functional 
specification for the tendency function and the specification of the cuadratic 
function for the diffusion function.

7.2  Empirical tests and specification analysis of the term structure 
of the models of Brennan-Schwartz and Schaefer-Schwartz

The time series used in this analysis include daily observations of Cetes for 1 
day to 10 years of maturity. The analyzed sample period covers from july 9th 
of 2002 up to december 7th of 2009, which comprises 1 867 observations for 
each term. Based upon the stationary density functions derived previously, 
we can estimate the unknown parameters, reducing to a minimal expression 
the cuadratic error between the estimate of the non parametric density and 
the density of the parametric model. The results of the parametric estimate 
of both models are shown in tables 1 and 2. 

The estimates of  ))()()(( 22 dxxdzzK π∫∫  and  ))()())()((( 42 dxxduxuKuK π∫∫∫ +  
are respectively: 
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Tabla 1
Parameter values estimated with the Brennan and Schwarts model

Parameter  α    k    θ    p   rσ    lσ    δ   

 Estimate   0.98725   0.23873   0.10191  -
0.01533 

 0.4956   0.21096   0.24627  

 

Tabla 2
Values of the parameters estimate with the Schaefer and Schwartz model

  Parameter   α    β    σ   

 Estimate   1.7612   1.50114   0.1796  
 

Taking a critical value of 6.32 to obtain a test level of 0.05%. For the normal 
kernel, the two kernel constants are:
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To estimate the marginal density, the smoothed parameter hn = h is selected 
such that  ∞∞→ =lim

2nhn  and  0=lim
5nh∞→ . The quality of the estimate of the 

density depends mainly on the selection of the smoothing parameter rather 
than on the kernel. We select  1/5= −nch n , where  )(ln(= nccn . c is choosed such 
that it minimizes the mean cuadratic integrable error of the estimate. The 
results of this test are shown in Table 3. Both models Brennan-Schwartz 
and Schaefer-Schwartz are rejected with a significance level of 0.05%. The 
main reasons for rejection of both models are: first, the constant diffusions 
limit volatilities to be uniformly increasing. Second, if a model has a linear 
especification for the drift and also has a constant diffusion, as in the case 
of Brennan-Schwartz and Schwartz-Schaefer, the parameters founded in 
the tendency and difussion functions might not be homogeneous, that is, 
shifts in the economical regime implies the possible lack of stationarity of the 
parameters during the modeling process.
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  Tabla 3
Tests of parametric specification of two factor models of time continuum

Brennan-Schwartz 
Function of Tendency Function of 

Diffusion 
Statistical Test I Statistical Test II Critical 

Value 
Result 

  nT2  nT    

]2[ (ln ln ) 1/ 2 rr l p rα σ− − +  rr ⋅σ  46.2792  1.645 Reject 
2[ ( ( ln ) 1/ 2 )]ll k lθ σ− +  ll ⋅σ   21.48973 1.645 Reject 

Schaefer-Schwartz 

( )( ) , ,tS s l tβ α µ−  γ  75.07685  1.645 Reject 

 ( )lσ   123.97681 1.645 Reject 

 

8. conclusions
 
It was proposed a statistical test for the specification of parametric models 
of two factors. We present three different tests. The first two are based upon 
a comparison between the estimate of the kernel density of the unknown 
density function and the estimate of  ),( βπ x  by the Delta method. The last 
test is based upon the idea of comparison between the estimate of the kernel 
density and the parametric model of the smoothed density kernel to avoid 
skew effects. The advantage of the last test respect the first two tests is its 
validity for under smoothed data and also over smoothed data. This test 
can be applied in many financial process which of research importance. 
Particularly, this test was applied to determine if the dynamic of the term 
structure of Cetes can be modeled from the assumptions of two models, 
that of Brennan-Schwartz (1979) and that of Schaefer-Schwartz (1984), the 
test results show that both continuous models are rejected at a 5% level as 
accurate describing the dynamic of Cetes. Finally the causes for rejection 
were analyzed for both models.
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